Abstract
The amount of light available for photosynthesis is a key environmental factor that shapes the form and function of plants. Several plant traits affect the manner in which different species fix carbon during vegetative growth. Under the hypothesis that grasses respond to environmental selective pressures, we analyzed the differences in certain leaf, culm, and regenerative traits of 283 native Uruguayan grasses growing in open (grassland) and shaded (forest) habitats. In order to differentiate the phylogenetic effects from the adaptive changes to current local conditions, we used phylogenetically controlled comparative analysis. We found that the divergence of grass species between grasslands and forests was accompanied by changes in leaf traits. Narrow and filiform blades (higher length/width ratio) were favored in species growing in grasslands, while wider and oval blades were favored in species growing in forests. The response of the leaf blades in forests was probably directed towards maximizing light interception, while in grasslands could be linked to the loss of water and heat. In contrast, we found that neither the culm nor the caryopsis length exhibited significant evolutionary changes associated with open or shaded habitats. Our results highlight the functional significance and adaptive value of the width and shape of the grass blades to the current environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.