Abstract

Worldwide drylands are threatened by changes in resource availability associated with global environmental change. Functional traits may help predict which species will be most responsive to these alterations in nutrient and water availability. Current functional trait work focuses on tissue construction and nutrient concentrations, but plant performance in low resource environments also may be strongly influenced by traits related to nutrient budgets and allocation. Our overall objective was to compare trait responses in a suite of serpentine and nonserpentine congener pairs from the California chaparral, a biodiverse region facing nutrient deposition and future changes in precipitation. In a common garden greenhouse environment, we grew small plants of Arctostaphylos manzanita, A. viscida, Ceanothus cuneatus, C. jepsonii, Quercus berberidifolia, and Q. durata in contrasting soil nutrient and moisture treatments. We measured a suite of traits representing physiological, growth, and mineral nutrient responses to these treatments. Overall, plant growth rate and leaf-level phosphorus use efficiency were greatest in the low water, high nutrient treatment, and lowest in the high water, low nutrient treatment. Variation in growth rate and plasticity among species and treatments was primarily associated with differences in mineral nutrition-based traits as opposed to differences in biomass allocation or specific leaf area. Namely, faster growing species and species with greater plasticity allocated more nitrogen and phosphorous to leaves and demonstrated greater photosynthetic phosphorus use efficiency. Overall, nonserpentine species had greater plasticity and biomass response to resource addition than serpentine species, and congener pairs responded to these resource additions more similarly to each other than species across congener pairs. This study extends our general understanding of how functional traits may influence species responses to environmental change and highlights the need to integrate mineral nutrition-based traits, including allocation of nutrient pools and nutrient use efficiency into this larger trait framework. Ultimately, this insight can help identify, in part, why coexisting species may vary in sensitivity to anthropogenic driven changes in soil resource availability.

Highlights

  • Increased drought intensity due to rising temperatures is expected to have pronounced effects on drylands across the globe (International Panel on Climate Change, 2013; Prăvălie, 2016), with the areal extent of drylands projected to increase, covering nearly one-half of terrestrial systems worldwide by the end of the century (Huang et al, 2016)

  • Based on MANOVA results (Supplemental Table 1A), physiological responses depended on the combination of water and nutrient treatment the species received (Pillai’s trace = 0.239; F4,78 = 6.137; p < 0.0001) and whether the species originated from serpentine or nonserpentine soil (Pillai’s trace = 0.135; F4,78 = 3.041; p = 0.021)

  • If our pot conditions are a reasonable simulation of nutrient and water availability in the field, our data suggest that these chaparral species could respond positively to future nutrient deposition, but these positive responses could be dampened during periods of high precipitation

Read more

Summary

Introduction

Increased drought intensity due to rising temperatures is expected to have pronounced effects on drylands across the globe (International Panel on Climate Change, 2013; Prăvălie, 2016), with the areal extent of drylands projected to increase, covering nearly one-half of terrestrial systems worldwide by the end of the century (Huang et al, 2016). While several long-term and short-term studies have documented pronounced changes in dryland plant community composition following nutrient enrichment or a combination of drought and nutrient enrichment, in most cases, these responses appear to be highly variable among species (e.g., Báez et al, 2007; Allen et al, 2010; Kinugasa et al, 2012; Vourlitis, 2017), and we largely lack a physiological foundation for predicting how these simultaneous anthropogenic stressors may impact co-occurring native species Such a framework is necessary to link variation in climate change exposure to differences in species and plant community vulnerability to environmental change (Shi et al, 2018). Focusing functional trait analyses on resource conservation traits, such as tight internal nutrient recycling, high nutrient use efficiency, greater root investment, and higher nutrient storage capacity, may be more important than simple leaf-level analyses for understanding plant responses to environmental change in low resource systems This whole plant perspective is crucial, as multiple traits can influence mean nutrient residence time and can act in compensatory or synergistic ways. Multiple traits influence mean nutrient residence time, but they may come at a cost if investment in one trait decreases depending on another—i.e., the traits may be compensatory

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call