Abstract

The seedling stage of plants is a crucial and vulnerable period in population and community dynamics. Despite this, studies on how plant traits respond to different environmental stresses often tend to overlook this early stage. Our study focused on Sophora alopecuroides L. seedlings in Ningxia Yanchi desert steppe, analyzing the effects of sand burial, salinity, and drought on their key aboveground and belowground traits. The results showed that sand burial significantly negatively affected stem biomass (SB), leaf biomass (LB), stem diameter (SD), leaf length (LL), leaf width (LW), leaf area (LA), and total root volume (RV), but positively influenced total root length (RL). As sand burial depth increased, SB, LB, SD, LL, LW, LA, RV, root biomass (RB), RV, and lateral root numbers (LRN) significantly decreased. Salinity stress negatively affected SB, LB, SD, LL, LW, LA, RB, RL, and RV, with these traits declining as the stress concentration increased. Drought stress had a positive effect on SD and LL, with both traits showing an increase as the intensity of the drought stress intensified; however, it adversely affected RL. In Ningxia Yanchi desert steppe, salinity stress had the most significant effect on the traits of S. alopecuroides seedlings, followed by sand burial, with drought having the least significant effect. This study provides essential theoretical support for understanding how S. alopecuroides seedlings cope with environmental stresses in their early life stages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call