Abstract

A cortical plasticity after long-duration single side deafness (SSD) is advocated with neuroimaging evidence while little is known about the short-duration SSDs. In this case-cohort study, we recruited unilateral sudden sensorineural hearing loss (SSNHL) patients and age-, gender-matched health controls (HC), followed by comprehensive neuroimaging analyses. The primary outcome measures were temporal alterations of varied dynamic functional network connectivity (dFNC) states, neurovascular coupling (NVC) and brain region volume at different stages of SSNHL. The secondary outcome measures were pure-tone audiograms of SSNHL patients before and after treatment. A total of 38 SSNHL patients (21 [55%] male; mean [standard deviation] age, 45.05 [15.83] years) and 44 HC (28 [64%] male; mean [standard deviation] age, 43.55 [12.80] years) were enrolled. SSNHL patients were categorized into subgroups based on the time from disease onset to the initial magnetic resonance imaging scan: early- (n = 16; 1-6 days), intermediate- (n = 9; 7-13 days), and late- stage (n = 13; 14-30 days) groups. We first identified slow state transitions between varied dFNC states at early-stage SSNHL, then revealed the decreased NVC restricted to the auditory cortex at the intermediate- and late-stage SSNHL. Finally, a significantly decreased volume of the left medial superior frontal gyrus (SFGmed) was observed only in the late-stage SSNHL cohort. Furthermore, the volume of the left SFGmed is robustly correlated with both disease duration and patient prognosis. Our study offered neuroimaging evidence for the evolvement from functional to structural brain alterations of SSNHL patients with disease duration less than 1 month, which may explain, from a neuroimaging perspective, why early-stage SSNHL patients have better therapeutic responses and hearing recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call