Abstract

The visualization of the long noncoding RNA of prostate cancer gene 3 (lncRNA PCA3), a specific biomarker for androgen receptor-positive prostate cancer, in living cells not only directly reflects the gene expression and localization but also offers better insight into its roles in the pathological processes. Here, we loaded an entropy-driven RNA explorer (EDRE) on the TAT peptide-functionalized titanium carbide MXenes (Ti3C2-TAT) for the imaging of nuclear lncRNA PCA3 in live cells. The EDRE was condensed on the Ti3C2-TAT (Ti3C2-TAT@EDRE) by electrostatic interaction. Ti3C2-TAT@EDRE enables the entering of cells and release of TAT peptides and EDRE in the cytoplasm by the glutathione (GSH)-triggered cleavage of the disulfide bonds in Ti3C2-TAT. The released EDRE is delivered into the nucleus by the nucleus-targeted guidance of TAT peptides, and initiated by the target lncRNA PCA3, subsequently leading to the continuous accumulation of fluorescence signals. Consequently, fluorescence analysis of lncRNA PCA3 at low-picomolar concentrations in vitro as well as sensitive live cell imaging of lncRNA PCA3 in the nucleus of androgen receptor-positive LNCaP prostate cancer cells were achieved, providing a versatile strategy for the monitoring of nucleic acid biomarkers in the nucleus of living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.