Abstract

An implementation-dependent functional testing methodology is developed for pipelined CPU implementations. The magnitude of pipeline design errors is established through the study of the design log of a commercial computer system. A model for determining the correctness of the execution of a machine language program is developed. The basis for functional pipeline test generation, the dependency graph, is introduced. A quantitative analysis of the number of dependency arcs exercised by a given instruction stream is developed. Techniques to reduce the complexity are also introduced. A methodology for generating pipeline functional test modules for a pipelined implementation is developed. Application of the methodology to a military standard computer architecture, the MIL-STD-1750A, is described. The results for the test generator, called AUTOGEN, show two orders of magnitude reduction of the test length over the standard comprehensive architectural verification program. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.