Abstract

A reinvestigation of the linalool synthase from Chryseobacterium polytrichastri uncovered its diterpene synthase activity, yielding polytrichastrene A and polytrichastrol A with new skeletons, besides known wanju‐2,5‐diene and thunbergol. The enzyme mechanism was investigated by isotopic labeling experiments and DFT calculations to explain an unusual ethyl group formation. Rationally designed exchanges of active site residues showed major functional switches, resulting for I66F in the production of five more new compounds, including polytrichastrene B and polytrichastrol B, while A87T, A192V and the double exchange A87T, A192V gave a product shift towards wanju‐2,5‐diene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.