Abstract

The random survival forest (RSF) is a non-parametric alternative to the Cox proportional hazards model in modeling time-to-event data. In this article, we developed a modeling framework to incorporate multivariate longitudinal data in the model building process to enhance the predictive performance of RSF. To extract the essential features of the multivariate longitudinal outcomes, two methods were adopted and compared: multivariate functional principal component analysis and multivariate fast covariance estimation for sparse functional data. These resulting features, which capture the trajectories of the multiple longitudinal outcomes, are then included as time-independent predictors in the subsequent RSF model. This non-parametric modeling framework, denoted as functional survival forests, is better at capturing the various trends in both the longitudinal outcomes and the survival model which may be difficult to model using only parametric approaches. These advantages are demonstrated through simulations and applications to the Alzheimer's Disease Neuroimaging Initiative.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call