Abstract
Dynamic formation of self-assemblies from molecular components is a useful and efficient way to produce molecular and supramolecular architectures with sophisticated functions. The labile coordination bond and dynamic covalent bond as a reversible bond have often been used to create a well-organized supramolecular self-assembly. In order to realize sophisticated novel functions of the supramolecular self-assemblies, dipyrrin complexes have recently been employed as a functional unit and incorporated into the supramolecular architectures because of their outstanding properties and functions such as a high photostability and strong light absorption/emission. This review article summarizes recent development in functional supramolecular architectures of the dipyrrin complexes produced by coordination to a metal ion and dynamic covalent bond formation. We first describe the synthesis and unique functions of a series of discrete supramolecular architectures: helicates, macrocycles, and cages. The polymeric supramolecular self-assemblies with 1D, 2D, and 3D structures are then introduced as a functional infinite supramolecular architecture.
Highlights
Dynamic formation of self-assemblies consisting of homo- and hetero-molecular components is a useful and efficient way to produce molecular and supramolecular architectures with sophisticated functions, which would not be realized by typical single molecules
We introduce and review recent research regarding supramolecular architectures with the dipyrrin complexes produced by coordination to a metal ion and dynamic covalent bond formation
Studies of supramoleular architectures created via the dynamic reversible bond formation have significantly progressed to afford more elaborate structures and functions
Summary
Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science, University of Tsukuba, Tsukuba, Japan. Dynamic formation of self-assemblies from molecular components is a useful and efficient way to produce molecular and supramolecular architectures with sophisticated functions. The labile coordination bond and dynamic covalent bond as a reversible bond have often been used to create a well-organized supramolecular self-assembly. In order to realize sophisticated novel functions of the supramolecular self-assemblies, dipyrrin complexes have recently been employed as a functional unit and incorporated into the supramolecular architectures because of their outstanding properties and functions such as a high photostability and strong light absorption/emission. This review article summarizes recent development in functional supramolecular architectures of the dipyrrin complexes produced by coordination to a metal ion and dynamic covalent bond formation. The polymeric supramolecular self-assemblies with 1D, 2D, and 3D structures are introduced as a functional infinite supramolecular architecture
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.