Abstract

The breaking of time-reversal symmetry in a triplet superconductor Josephson junction is shown to cause a magnetic instability of the tunneling barrier. Using a Ginzburg-Landau analysis of the free energy, we predict that this novel functional behavior reflects the formation of an exotic Josephson state, distinguished by the existence of fractional flux quanta at the barrier. The crucial role of the orbital pairing state is demonstrated by studying complementary microscopic models of the junction. Signatures of the magnetic instability are found in the critical current of the junction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.