Abstract

Nearly all strains of Streptococcus agalactiae, the leading cause of invasive infections in neonates, encode a type II-A clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system. Interestingly, S. agalactiae strains belonging to the hypervirulent Sequence Type 17 (ST17) contain significantly fewer spacers in their CRISPR locus than other lineages, which could be the result of a less functional CRISPR-Cas system. Here, we revealed one large deletion in the ST17 cas promoter region and we evaluated its impact on the transcription of cas genes as well as the functionalities of the CRISPR-Cas system. We demonstrated that Cas9 interference is functional and that the CRISPR-Cas system of ST17 strains can still acquire new spacers, despite the absence of a regular cas promoter. We demonstrated that a promoter sequence upstream of srn036, a small RNA partially overlapping the antisense tracrRNA, is responsible for the ST17 CRISPR-Cas adaptation and interference activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call