Abstract

In trypanosomatids, regulation of gene expression occurs mainly at the posttranscriptional level, and RNA-binding proteins (RBPs) are key players in determining the fates of transcripts. RBPs are targets of protein arginine methyltransferases (PRMTs), which posttranslationally regulate the RNA-binding capacity and other RBP interactions by transferring methyl groups to arginine residues (R-methylation). Herein, we functionally characterized the five predicted PRMTs in Leishmania braziliensis by gene knockout and endogenous protein HA tagging using CRISPR/Cas9 gene editing. We report that R-methylation profiles vary among Leishmania species and across L.braziliensis lifecycle stages, with the peak PRMT expression occurring in promastigotes. A list of PRMT-interacting proteins was obtained in a single coimmunoprecipitation assay using HA-tagged PRMTs, suggesting a network of putative targets of PRMTs and cooperation between the R-methylation writers. Knockout of each L.braziliensis PRMT led to significant changes in global arginine methylation patterns without affecting cell viability. Deletion of either PRMT1 or PRMT3 disrupted most type I PRMT activity, resulting in a global increase in monomethyl arginine levels. Finally, we demonstrate that L.braziliensis PRMT1 and PRMT5 are required for efficient macrophage infection in vitro, and for axenic amastigote proliferation. The results indicate that R-methylation is modulated across lifecycle stages in L.braziliensis and show possible functional overlap and cooperation among the different PRMTs in targeting proteins. Overall, our data suggest important regulatory roles of these proteins throughout the L.braziliensis life cycle, showing that arginine methylation is important for parasite-host cell interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call