Abstract

Lytic polysaccharide monooxygenases (LPMOs) can improve the effectiveness with which agricultural waste is utilized. This study described the potent AA9 family protein MsLPMO3, derived from Morchella sextelata. It exhibited strong binding to phosphoric acid swollen cellulose (PASC), and had the considerable binding ability to Cu2+ with a Kd value of 2.70 μM by isothermal titration calorimetry (ITC). MsLPMO3 could also act on PASC at the C1 carbon via MALDI-TOF-MS results. Moreover, MsLPMO3 could boost the hydrolysis efficiency of corncob and wheat bran in combination with glycoside hydrolases. MsLPMO3 also exhibited strong oxidizing ability for 2,6-dimethoxyphenol (2,6-DMP), achieving the best Vmax value of 443.36 U·g−1 for pH 7.4 with a H2O2 concentration of 300 µM. The structure of MsLPMO3 was obtained using AlphaFold2, and the molecular docking results elucidated the specific interactions and key residues involved in the recognition process between MsLPMO3 and cellulose. Altogether, this study expands the knowledge of AA9 family proteins in cellulose degradation, providing valuable insights into the mechanisms of synergistic degradation of lignocellulose with cellulases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call