Abstract

Latex, a sticky emulsion produced by specialized cells called laticifers, is a crucial part of a plant’s defense system against herbivory and pathogens. It consists of a broad spectrum of active compounds, which are beneficial not only for plants, but for human health as well, enough to mention the use of morphine or codeine from poppy latex. Here, we reviewed latex’s general role in plant physiology and the significance of particular compounds (alkaloids and proteins) to its defense system with the example of Chelidonium majus L. from the poppy family. We further attempt to present latex chemicals used so far in medicine and then focus on functional studies of proteins and other compounds with potential pharmacological activities using modern techniques such as CRISPR/Cas9 gene editing. Despite the centuries-old tradition of using latex-bearing plants in therapies, there are still a lot of promising molecules waiting to be explored.

Highlights

  • Arg., which is the main and irreplaceable natural rubber source, have the best known and described latex composition. These complex fluids consist of different secondary metabolites, like terpenes, alkaloids, or phenolics, and jointly with a broad range of proteins are the first line of plant herbivore defense system

  • We propose a model of antiviral latex activity and present examples of CRISPR/Cas9 editing genomes, which

  • This study showed that CaPR10 after inoculation with the virus is phosphorylated and functions as RNase cleaving viral

Read more

Summary

Introduction

Arg., which is the main and irreplaceable natural rubber source, have the best known and described latex composition These complex fluids consist of different secondary metabolites, like terpenes, alkaloids, or phenolics, and jointly with a broad range of proteins are the first line of plant herbivore defense system. Another extensively studied laticiferous medicinal plant is Greater. We focus on two classes of compounds, proteins and alkaloids, which represent complex macromolecules and low-molecular compounds Both types of molecules co-exist in plant latex and possibly actively cooperate in a synergistic manner to enable and boost their biological activities. Despite its long history of use, there is still room for improvement of agronomic traits in domesticated latex-bearing plants and for the exploitation of wild species latex compounds to prepare a range of novel compounds of therapeutic potential, as well as novel drugs and drug carriers

Diversity and Role of Latex in Plant Physiology
Main Components of Latex-Secondary Metabolites
Spectrum of Latex Proteins
Antiviral Activity
Cytotoxicity
Antimicrobial Activity
Immunomodulatory Properties
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.