Abstract

Mitochondria generate adenosine triphosphate (ATP) but also dangerous reactive oxygen species (ROS). One-electron reduction of dioxygen in the early stages of the electron transport chain yields a superoxide radical that is detoxified by mitochondrial superoxide dismutase to give hydrogen peroxide. The hydroxyl radical is derived from decomposition of hydrogen peroxide via the Fenton reaction, catalyzed by Fe2+ ions. Mitochondria require a constant supply of Fe2+ for heme and iron-sulfur cluster biosyntheses and therefore are particularly susceptible to ROS attack. Two main antioxidant defenses are known in mitochondria: enzymes that catalytically remove ROS, e.g. superoxide dismutase and glutathione peroxidase, and low molecular weight agents that scavenge ROS, including coenzyme Q, glutathione, and vitamins E and C. An effective defensive system, however, should also involve means to control the availability of pro-oxidants such as Fe2+ ions. There is increasing evidence that this function may be carried out by the mitochondrial protein frataxin. Frataxin deficiency is the primary cause of Friedreich's ataxia (FRDA), an autosomal recessive degenerative disease. Frataxin is a highly conserved mitochondrial protein that plays a critical role in iron homeostasis. Respiratory deficits, abnormal cellular iron distribution and increased oxidative damage are associated with frataxin defects in yeast and mouse models of FRDA. The mechanism by which frataxin regulates iron metabolism is unknown. The yeast frataxin homologue (mYfhlp) is activated by Fe(II) in the presence of oxygen and assembles stepwise into a 48-subunit multimer (α48) that sequesters <2000 atoms of iron in a ferrihydrite mineral core. Assembly of mYfhlp is driven by two sequential iron oxidation reactions: a fast ferroxidase reaction catalyzed by mYfh1p induces the first assembly step (αα3), followed by a slower autoxidation reaction that promotes the assembly of higher order oligomers yielding α48. Depending on the ionic environment, stepwise assembly is associated with the sequestration of 50–75 Fe(II)/subunit. This Fe(II) is initially loosely bound to mYfh1p and can be readily mobilized by chelators or made available to the mitochondrial enzyme ferrochelatase to synthesize heme. However, as iron oxidation and mineralization proceed, Fe(III) becomes progressively inaccessible and a stable iron-protein complex is produced. In conclusion, by coupling iron oxidation with stepwise assembly, frataxin can successively function as an iron chaperon or an iron store. Reduced iron availability and solubility and increased oxidative damage may therefore explain the pathogenesis of FRDA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.