Abstract

Eukaryotic cilia and flagella are highly conserved structures composed of a canonical 9+2 microtubule axoneme. Several recent proteomic studies of cilia and flagella have been published, including a proteome of the flagellum of the protozoan parasite Trypanosoma brucei. Comparing proteomes reveals many novel proteins that appear to be widely conserved in evolution. Amongst these, we found a previously uncharacterised protein which localised to the axoneme in T. brucei, and therefore named it Trypanosome Axonemal protein (TAX)-2. Ablation of the protein using RNA interference in the procyclic form of the parasite has no effect on growth but causes a reduction in motility. Using transmission electron microscopy, various structural defects were seen in some axonemes, most frequently with microtubule doublets missing from the 9+2 arrangement. RNAi knockdown of TAX-2 expression in the bloodstream form of the parasite caused defects in growth and cytokinesis, a further example of the effects caused by loss of flagellar function in bloodstream form T. brucei. In procyclic cells we used a new set of vectors to ablate protein expression in cells expressing a GFP:TAX-2 fusion protein, which enabled us to easily quantify protein reduction and visualise axonemes made before and after RNAi induction. This establishes a useful generic technique but also revealed a specific observation that the new flagellum on the daughter trypanosome continues growth after cytokinesis. Our results provide evidence for TAX-2 function within the axoneme, where we suggest that it is involved in processes linking the outer doublet microtubules and the central pair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call