Abstract

Meier-Gorlin syndrome (MGORS) is an autosomal recessive disorder characterized by short stature, microtia, and patellar hypoplasia, and is caused by pathogenic variants of cellular factors involved in the initiation of DNA replication. We previously reported that biallelic variants in GINS3 leading to amino acid changes at position 24 (p.Asp24) cause MGORS. Here, we describe the phenotype of a new individual homozygous for the Asp24Asn variant. We also report the clinical characteristics of an individual harboring a novel homozygous GINS3 variant (Ile25Phe) and features suggestive of MGORS. Modification of the corresponding residue in yeast Psf3 (Val9Phe) compromised S phase progression compared to a humanized Psf3 Val9Ile variant. Expression of Psf3 Val9Phe in yeast also caused sensitivity to elevated temperature and the replicative stress-inducing drug hydroxyurea, confirming partial loss of function of this variant in vivo and allowing us to upgrade the classification of this variant. Taken together, these data validate the critical importance of the GINS DNA replication complex in the molecular etiology of MGORS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.