Abstract

Stability of a soil property to perturbation comprises both resistance and resilience. Resistance is defined as the ability of the soil to withstand the immediate effects of perturbation, and resilience the ability of the soil to recover from perturbation. Functional stability is used here to describe the stability of a biological function to perturbation, rather than the stability of physical structure or chemical properties. The function chosen for this study was the short-term decomposition of added plant residues, and the perturbations were copper and heat stresses. Previous studies had shown that functional stability was reduced greatly in soils with experimentally reduced biodiversity. The objective of this study was to determine the relative sensitivity of functional stability and potential indicators of biological status to detect alteration of field soils by various environmental impacts. Functional stability, protozoan populations and substrate mineralisation kinetics, were measured on paired soils with: high or low plant species diversity; hydrocarbon pollution or not; extensive or intensive agricultural management practices. Substrate mineralisation kinetics were poorly related to the soil’s antecedent conditions and were stimulated significantly by hydrocarbon pollution. Protozoan populations were potentially useful for detecting differences within soil type, but will require greater taxonomic input to be most useful. Functional stability, particularly resistance, was able to quantify differences between and within soils. The potential development of the technique in relation to soil health is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.