Abstract

In the neocortex, neural activity is shaped by the interaction of excitatory and inhibitory neurons, defined by the organization of their synaptic connections. Although connections among excitatory pyramidal neurons are sparse and functionally tuned, inhibitory connectivity is thought to be dense and largely unstructured. By measuring invivo visual responses and synaptic connectivity of parvalbumin-expressing (PV+) inhibitory cells in mouse primary visual cortex, we show that the synaptic weights of their connections to nearby pyramidal neurons are specifically tuned according to the similarity of the cells' responses. Individual PV+ cells strongly inhibit those pyramidal cells that provide them with strong excitation and share their visual selectivity. This structured organization of inhibitory synaptic weights provides a circuit mechanism for tuned inhibition onto pyramidal cells despite dense connectivity, stabilizing activity within feature-specific excitatory ensembles while supporting competition between them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.