Abstract

The yeast genome encodes four proteins (Pms1 and Mlh1-3) homologous to the bacterial mismatch repair component, MutL. Using two hybrid-interaction and coimmunoprecipitation studies, we show that these proteins can form only three types of complexes in vivo. Mlh1 is the common component of all three complexes, interacting with Pms1, Mlh2, and Mlh3, presumptively as heterodimers. The phenotypes of single deletion mutants reveal distinct functions for the three heterodimers during meiosis: in a pms1 mutant, frequent postmeiotic segregation indicates a defect in the correction of heteroduplex DNA, whereas the frequency of crossing-over is normal. Conversely, crossing-over in the mlh3 mutant is reduced to approximately 70% of wild-type levels but correction of heteroduplex is normal. In a mlh2 mutant, crossing-over is normal and postmeiotic segregation is not observed but non-Mendelian segregation is elevated and altered with respect to parity. Finally, to a first approximation, the mlh1 mutant represents the combined single mutant phenotypes. Taken together, these data imply modulation of a basic Mlh1 function via combination with the three other MutL homologs and suggest specifically that Mlh1 combines with Mlh3 to promote meiotic crossing-over.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.