Abstract

Abstract Polymer-based nanofibers are good candidates for medical textiles due to their excellent properties including high surface area, breathability and flexibility. Doping polymer nanofibers with different nanoparticles enhances their existing properties. In this study, electrospun polyamide 6,6 (PA6,6) composite nanofibers containing ZnO nanoparticles (<50 nm) in different amounts (1%, 3% and 5%) were first produced by electrospinning technique; then, these nanofibers were coated with sol-gel ZnO solution (0.5 m) via dip coating method at 1000, 3000 and 5000 μm/s speeds. The sol-gel coating process increased the breaking strength of nanofiber mats, while the incorporation of ZnO nanoparticles into the polymer nanofibers reduced. Compared to pure PA6,6 nanofiber mats, the ZnO sol-gel coated samples and doped nanofibers had lower reflectance values. In addition, the reflection values decreased as the additive and coating speed increased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.