Abstract

Genetic mutations contribute to the etiology of autism spectrum disorder (ASD), a common, heterogeneous neurodevelopmental disorder characterized by impairments in social interaction, communication, and repetitive and restricted patterns of behavior. Since neuroligin3 (NLGN3), a cell adhesion molecule at the neuronal synapse, was first identified as a risk gene for ASD, several additional variants in NLGN3 and NLGN4 were found in ASD patients. Moreover, synaptopathies are now known to cause several neuropsychiatric disorders including ASD. In humans, NLGNs consist of five family members, and neuroligin1 (NLGN1) is a major component forming a complex on excitatory glutamatergic synapses. However, the significance of NLGN1 in neuropsychiatric disorders remains unknown. Here, we systematically examine five missense variants of NLGN1 that were detected in ASD patients, and show molecular and cellular alterations caused by these variants. We show that a novel NLGN1 Pro89Leu (P89L) missense variant found in two ASD siblings leads to changes in cellular localization, protein degradation, and to the impairment of spine formation. Furthermore, we generated the knock-in P89L mice, and we show that the P89L heterozygote mice display abnormal social behavior, a core feature of ASD. These results, for the first time, implicate rare variants in NLGN1 as functionally significant and support that the NLGN synaptic pathway is of importance in the etiology of neuropsychiatric disorders.

Highlights

  • Autism spectrum disorder (ASD) is a common, heterogeneous neurodevelopmental disorder characterized by impairments in social interaction, communication, and repetitive and restricted patterns of behavior

  • Autism spectrum disorder (ASD) is a childhood disorder manifested by abnormal social behavior, interests, and activities

  • We found a novel mutation in NLGN1, a gene encoding a synaptic protein, in patients with ASD

Read more

Summary

Introduction

Autism spectrum disorder (ASD) is a common, heterogeneous neurodevelopmental disorder characterized by impairments in social interaction, communication, and repetitive and restricted patterns of behavior. Recent large-scale genetic studies have highlighted hundreds of genes as risk factors for ASD pathogenesis [2, 3, 7]. Many of these risk-genes have a role in synaptic function and development [2, 9]. NLGN proteins form a trans-synaptic complex with presynaptic Neurexin (NRXN) via the extracellular domain, whereas the cytoplasmic domain interacts with postsynaptic molecules including PSD95, SHANK, EPAC, and MDGA [10, 11, 16, 17]. The specific synaptic pathway for etiology of ASD is not fully understood, the NRXN-NLGN complex and its downstream cascades have been suggested in processes underlying cognition and social behavior

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.