Abstract

Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets.Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to Laser Capture Microdissection and Reverse Phase Protein Microarray analysis to explore the expression/activation levels of 150 signaling proteins along with co-activation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC).Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p<0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-α) (p=0.02).This finding was verified in an independent population by IHC (p=0.03).KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-α, anti-estrogen therapy may have important clinical implications.

Highlights

  • Kirsten rat sarcoma viral oncogene homolog (KRAS) is one the most frequent molecular drivers in human cancers and activating mutations of the KRAS gene have been found in a wide variety of tumors with www.impactjournals.com/oncotarget greater frequencies in pancreas, colorectal and non-small cell lung cancer (NSCLC) [1]

  • KRAS mutations are found in about 25% of NSCLCs with the highest incidence in the adenocarcinoma (AD) subtype, a subgroup of tumors where up to 30% of patients are affected by the mutation [2]

  • Correlation analysis between KRAS downstream substrates and the expression/activation levels of the 145 analytes measured by reverse phase protein microarray (RPPA) showed an overall more complex network in the KRAS MT population with a greater number of correlations reaching statistical significance compared to the WT group (Supplementary Tables 2 and 3)

Read more

Summary

Introduction

Kirsten rat sarcoma viral oncogene homolog (KRAS) is one the most frequent molecular drivers in human cancers and activating mutations of the KRAS gene have been found in a wide variety of tumors with www.impactjournals.com/oncotarget greater frequencies in pancreas, colorectal and non-small cell lung cancer (NSCLC) [1]. KRAS mutations are found in about 25% of NSCLCs with the highest incidence in the adenocarcinoma (AD) subtype, a subgroup of tumors where up to 30% of patients are affected by the mutation [2]. This study explored the signaling network of KRAS mutant (MT) lung ADs to identify therapeutic biomarkers for the development of targeted treatment for this subgroup of patients. KRAS mutations are a negative prognostic factor for NSCLC and a negative predictor of response to EGFR tyrosine kinase inhibitors and to conventional chemotherapy [3,4,5,6]. Despite numerous efforts to develop therapeutic agents capable of directly targeting KRAS, this oncogene still represents an undruggable target [7]. New approaches aiming at modulating the guanine nucleotide binding pocket of G12C KRAS MT lesions have been recently proposed, but their clinical efficacy has yet to be proven [8, 10, 11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.