Abstract

MicroRNAs (miRNAs) have been involved in the pathogenesis of different types of cancer; however, their function in pituitary tumorigenesis remains poorly understood. Cyclic-AMP-dependent protein kinase-defective pituitaries occasionally form aggressive growth-hormone (GH)-producing pituitary tumors in the background of hyperplasia caused by haploinsufficiency of the protein kinase's main regulatory subunit, PRKAR1A. The molecular basis for this development remains unknown. We have identified a 17-miRNA signature of pituitary tumors formed in the background of hyperplasia (caused in half of the cases by PRKAR1A-mutations). We selected two miRNAs on the basis of their functional screen analysis: inhibition of miR-26b expression and upregulation of miR-128 suppressed the colony formation ability and invasiveness of pituitary tumor cells. Furthermore, we identified that miR-26b and miR-128 affected pituitary tumor cell behavior through regulation of their direct targets, PTEN and BMI1, respectively. In addition, we found that miR-128 through BMI1 direct binding on the PTEN promoter affected PTEN expression levels and AKT activity in the pituitary tumor cells. Our in vivo data revealed that inhibition of miR-26b and overexpression of miR-128 could suppress pituitary GH3 tumor growth in xenografts. Taken together, we have identified a miRNA signature for GH-producing pituitary tumors and found that miR-26b and miR-128 regulate the activity of the PTEN-AKT pathway in these tumors. This is the first suggestion of the possible involvement of miRNAs regulating the PTEN-AKT pathway in GH-producing pituitary tumor formation in the context of hyperplasia or due to germline PRKAR1A defects. MiR-26b suppression and miR-128 upregulation could have therapeutic potential in GH-producing pituitary tumor patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.