Abstract

Cytochromes are involved in a wide variety of redox reactions in living systems. Some of them contain multiple hemes such as Desulfovibrio cytochrome c3 and Shewanella small tetraheme cytochrome c. The significance of c-type tetraheme architectures was discussed. A cyclic heme architecture and its environment regulate the extremely low redox potentials of cytochrome c3 in addition to bis-imidazole coordination and heme exposure. Each heme in cytochrome c3 plays a different role in the electron transport to/from [NiFe] hydrogenase and the specific CO-binding. In contrast, the chain-like heme architecture in Shewanella small tetraheme cytochrome c and soluble fumarate reductase provides a pathway for directional electron transfer. Thus, the tetraheme architectures do not comprise simple heme assemblies but sophisticated devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.