Abstract

The DNA methyltransferase (Mtase) from Thermus aquaticus (M.TaqI) catalyzes the transfer of the activated methyl group of S-adenosyl-L-methionine to the N6 position of adenine within the double-stranded DNA sequence 5'-TCGA-3'. To achieve catalysis M.TaqI flips the target adenine out of the DNA helix. On the basis of the three-dimensional structure of M.TaqI in complex with the cofactor and its structural homology to the C5-cytosine DNA Mtase from Haemophilus haemolyticus, Tyr 108 and Phe 196 were suggested to interact with the extrahelical adenine. The functional roles of these two aromatic amino acid residues in M.TaqI were investigated by mutational analysis. The obtained mutant Mtases were analyzed in an improved kinetic assay, and their ability to flip the target base was studied in a fluorescence-based assay using a duplex oligodeoxynucleotide containing the fluorescent base analogue 2-aminopurine at the target position. While the mutant Mtases containing the aromatic amino acid Trp at position 108 or 196 (Y108W and F196W) showed almost wild-type catalytic activity, the mutant Mtases with the nonaromatic amino acid Ala (Y108A and F196A) had a strongly reduced catalytic constant. Y108A was still able to flip the target base, whereas F196A was strongly impaired in base flipping. These results indicate that Phe 196 is important for stabilizing the extrahelical target adenine and suggest that Tyr 108 is involved in placing the extrahelical target base in an optimal position for methyl group transfer. Since both aromatic amino acids belong to the conserved motifs IV and XIII found in N6-adenine and N4-cytosine DNA Mtases as well as in N6-adenine RNA Mtases, a similar function of aromatic amino acid residues within these motifs is expected for the different Mtases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.