Abstract
The purpose of this study was to explore the functional role of the cytoplasmic domain of the alpha subunit of the alpha 5/beta 1 integrin, a fibronectin receptor. Mutant CHO cells that express very low levels of endogenous hamster alpha 5 subunit (CHO clone B2) were transfected with an expression vector containing full-length or truncated human alpha 5 cDNAs to form chimeric human alpha 5/hamster beta 1 integrins. Three transfectants were examined: B2a27 expresses a full-length human alpha 5 subunit with 27 amino acids in the cytoplasmic domain; B2a10 expresses an alpha 5 with a 17-amino acid cytoplasmic truncation; B2a1 expresses an alpha 5 with a 26-amino acid truncation. Levels of alpha 5/beta 1 surface expression in B2a27 and B2a10 cells were similar to that in wild type CHO cells. The expression of alpha 5/beta 1 in B2a1 cells was less, amounting to 15-20% of WT levels, despite message levels that were three to five times greater than those of B2a27. The transfectants were used to examine the role of the alpha 5 cytoplasmic domain in cell adhesion, cell motility, cytoskeletal organization, and integrin-mediated tyrosine phosphorylation. The adhesion characteristics of B2a27 and B2a10 cells on fibronectin substrata were similar to each other and to wild type CHO cells. B2a1 cells displayed slight reductions in the strength and rate of adhesion to fibronectin. Cell motility in the presence of fibronectin was similar for B2a27, B2a10, and wild type CHO cells, while the B2a1 cells were substantially less motile. Comparable degrees of cell spreading and extensive organization of actin filaments were observed for B2a27, B2a10, and wild type CHO cells on fibronectin substrata. The B2a1 cells spread to a lesser degree, and some organization of actin was observed; the untransfected B2 cells remained round on fibronectin substrata and showed no actin reorganization. Since the reduced motility and cell spreading observed in the B2a1 cells might be due either to reduced surface expression of alpha 5/beta 1 or to the truncation in the alpha 5 cytoplasmic domain, we used flow cytometric cell sorting to select populations of B2a1 and B2a27 cells expressing similar levels of cell surface alpha 5. The deficits in spreading and motility were present in B2a1 cells expressing high levels of alpha 5. Thus the region of the alpha 5 cytoplasmic domain adjacent to the membrane seems to play an important role in cytoskeletal organization and cell motility. We also examined whether alpha subunit truncation would affect integrin-mediated tyrosine phosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.