Abstract

G protein-coupled receptors (GPCRs) transduce various extracellular signals, such as neurotransmitters, hormones, light, and odorous chemicals, into intracellular signals via G protein activation during neurological, cardiovascular, sensory and reproductive signaling. Common and unique features of interactions between GPCRs and specific G proteins are important for structure-based design of drugs in order to treat GPCR-related diseases. Atomic resolution structures of GPCR complexes with G proteins have revealed shared and extensive interactions between the conserved DRY motif and other residues in transmembrane domains 3 (TM3), 5 and 6, and the target G protein C-terminal region. However, the initial interactions formed between GPCRs and their specific G proteins remain unclear. Alanine scanning mutagenesis of the murine olfactory receptor S6 (mOR-S6) indicated that the N-terminal acidic residue of helix 8 of mOR-S6 is responsible for initial transient and specific interactions with chimeric Gα15_olf, resulting in a response that is 2.2-fold more rapid and 1.7-fold more robust than the interaction with Gα15. Our mutagenesis analysis indicates that the hydrophobic core buried between helix 8 and TM1–2 of mOR-S6 is important for the activation of both Gα15_olf and Gα15. This review focuses on the functional role of the C-terminal amphipathic helix 8 based on several recent GPCR studies.

Highlights

  • G protein-coupled receptors (GPCRs) form a large protein superfamily comprising nearly 800 members in humans [1]

  • GPCRs are mainly located in the plasma membrane, where they detect various extracellular physicochemical signals from inside the body or from external environments such as neurotransmitters, hormones, light, and odorous chemicals during neurological, cardiovascular, sensory and reproductive signaling processes via activation of respective target G protein α subunits (Gαs) and their effector proteins for intracellular signals

  • By comparing several GPCRs, this review focuses on the functional roles of the C-terminal amphipathic helix 8 of olfactory receptors (ORs) and other GPCRs

Read more

Summary

Introduction

G protein-coupled receptors (GPCRs) form a large protein superfamily comprising nearly 800 members in humans [1]. We found that the second residue of the amphipathic helix 8 in the C-terminal domain of the murine olfactory receptor S6 (mOR-S6), a GPCR superfamily member, is responsible for initial transient and specific interactions with chimeric Gα15_olf, but not with Gα15 [7].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call