Abstract

Growth/Differentiation Factor 5 (GDF5) plays an important role in limb mesenchymal cell condensation and chondrogenesis. Here we demonstrate, using high density cultures of chick embryonic limb mesenchyme, that GDF5 misexpression increased condensation of chondroprogenitor cells and enhanced chondrogenic differentiation. These effects were observed in the absence of altered cellular viability or biosynthetic activity, suggesting that GDF5 action might be directed at the level of cellular adhesion or cell-cell communication. GDF5- enhanced condensation occurred independent of cell density or N-cadherin mediated adhesion and signaling, but was inhibited upon interference of gap junction mediated communication. p38 MAP kinase signaling was required for the GDF5 effect on chondrocyte differentiation, but not for mesenchymal condensation. These findings suggest gap junction involvement in the action of GDF5 in developmental chondrogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call