Abstract

The N-terminal portion of the third intracellular loop (i3) of muscarinic acetylcholine and other G protein-coupled receptors has been shown to largely determine the G protein coupling profile of a given receptor subtype. Using the rat m3 muscarinic receptor as a model system, we have recently demonstrated that a tyrosine residue (Tyr-254), located at the beginning of the i3 domain, is critically involved in muscarinic receptor-mediated stimulation of phosphatidylinositol (PI) hydrolysis (Blüml, K., Mutschler, E., and Wess, J. (1994) J. Biol. Chem. 269, 402-405). This study was designed to investigate the functional role of this amino acid in further molecular detail. Replacement of Tyr-254 (rat m3 receptor) with alanine or exchange of its position with Ile-253 virtually abolished receptor-mediated stimulation of PI hydrolysis studied in transfected COS-7 cells. In contrast, substitution of Tyr-254 by other aromatic residues such as phenylalanine or tryptophan resulted in mutant receptors that behaved functionally similar to the wild type m3 receptor. Introduction of Tyr-254 into the corresponding position (Ser-210) of the m2 muscarinic receptor (which is only poorly coupled to PI turnover) did not result in an enhanced PI response. However, "reinsertion" of Tyr-254 into a functionally inactive chimeric m3/m2 muscarinic receptor (containing m2 receptor sequence at the N terminus of the i3 loop) yielded a mutant receptor that was able to stimulate PI hydrolysis to a similar maximum extent as the wild type m3 receptor. Taken together, our data provide strong evidence that muscarinic receptor-mediated stimulation of PI metabolism is critically dependent on the presence and proper positioning of an aromatic residue at the beginning of the i3 loop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.