Abstract
AbstractHydrogen ion autocatalytic reactions, especially in combination with an appropriate negative feedback process, show a wide range of dynamical phenomena, like clock behavior, bistability, oscillations, waves, and stationary patterns. The temporal or spatial variation of pH caused by these reactions is often significant enough to control the actual state (geometry, conformation, reactivity) or drive the mechanical motion of coupled pH‐sensitive physico‐chemical systems. These autonomous operating systems provide nonlinear chemistry's most reliable applications, where the hydrogen ion autocatalytic reactions act as engines. This review briefly summarizes the nonlinear dynamics of these reactions and the different approaches developed to properly couple the pH‐sensitive units (e. g., pH‐sensitive equilibria, gels, molecular machines, colloids). We also emphasize the feedback of the coupled processes on the dynamics of the hydrogen ion autocatalytic reactions since the way of coupling is a critical operational issue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.