Abstract

Bioaugmentation with exogenously functional microbes is a widely used technology in bioengineering and environmental remediation. Generally, the colonization of inoculated bacteria is considered to be the determining factor in technical success. However, increasing reports have shown that bioaugmentation was still effective when the colonization of inoculated bacteria was unsuccessful. Here, an augmentation study with iron-reducing bacteria (IRB, Shewanella decolorationis S12) was conducted in Fe(II)-poor sediments to elucidate the role of exogenously inoculated bacteria for bioaugmentation performance. The results showed that a sufficient amount of IRB inputs enhanced the iron reduction in bioaugmented sediments, even though the exogenous IRB did not colonize after the beginning of the experiment (less than 1% at day 3). The iron reduction function responded to stimulation of the indigenous IRB community such as Clostridium, Cupriavidus, Fervidicella, and Acinetobacter, which comprised less than 1% in the initial sediments. Moreover, compared with microbial community in control sediment, more positive correlations between OTUs were observed for that in S12-added sediments upon network analysis. The pH and oxidation-reduction potential of sediment were found to be the predominant factors shaping the iron-reducing microbial communities. It meant that exogenous IRB successfully trigged functional community via altering microenvironment by the inoculated bacteria. Overall, this study provides a new insight into the understanding of the role of single strain addition in iron-reducing bioaugmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call