Abstract

In laboratory experiments, fingerling kokanee salmon (Oncorhynchus nerka, 3–8 g) were presented with varying densities of zooplankton prey (Daphnia spp.) ranging from 3 to 55 Daphnia·L–1, under three light intensities (30, 15, and 0.1 lx). Kokanee exhibited a type I functional response at 0.1 lx (Daphnia consumption·min–1= 1.74 prey·L–1), a light level typical of moonlit epilimnetic conditions, but shifted to a type II functional response at higher light levels. Both 15 and 30 lx light levels occur during crepuscular periods when kokanee feeding is maximal in the wild, and consumption rates at these light levels were not significantly different (Daphnia consumption·min–1= (163.6 prey·L–1)(42.2 prey·L–1)–1). The shift from the type I to type II functional response may be attributed to a foraging mode switch and the incorporation of search time instead of random encounters with prey. Using these models to simulate feeding rates in a Colorado reservoir, attenuation of light intensity and prey density between the epilimnion and hypolimnion resulted in a 100-fold increase in predicted feeding duration. Functional responses that incorporate environmental characteristics like light are important components of foraging models that seek to understand fish consumption, growth, and behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.