Abstract

N-methyl-D-aspartate (NMDA) receptor-mediated synaptic transmission is implicated in activity-dependent developmental reorganization in mammalian brain, including sensory systems and spinal motoneuron circuits. During normal development, synaptic interactions important in activity-dependent modification of neuronal circuits may be driven spontaneously (Shatz 1990b). The respiratory system exhibits substantial spontaneous activity in utero; this activity may be critical in assuring essential and appropriate breathing movements from birth. We tested the hypothesis that NMDA receptors are necessary for prenatal development of central neural circuits underlying respiratory rhythm generation by comparing the responsiveness of control mice and mutant mice lacking the NMDA receptor R1 subunit (NMDAR1) gene to glutamate receptor agonists and antagonists and comparing endogenous respiratory-related oscillations generated in vitro by brain stem-spinal cord and medullary slice preparations from control and mutant mice. In control mice, local application of NMDA and the non-NMDA receptor agonist, (R,S)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid hydrobromide (AMPA), over the pre-Bötzinger Complex, the C4 cervical motor neuron pool, and the hypoglossal motor nucleus produced profound increases in inspiratory frequency, tonic discharge on C4 ventral nerve roots, and inward currents in inspiratory hypoglossal motoneurons, respectively. Responses of mutant mice to AMPA were similar. However, mutant mice were completely unresponsive to NMDA applications. Preparations from mutant mice generated a respiratory rhythm virtually identical to control. Results demonstrate that NMDA receptors are not essential for respiratory rhythm generation or drive transmission in the neonate. More importantly, they suggest that NMDA receptors are not obligatory for the prenatal development of circuits producing respiratory rhythm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.