Abstract

Computational fluid dynamics (CFD) simulations and isothermal approximation were applied for the interpretation of experimental measurements of the C10H7Br pyrolysis efficiency in the high-temperature microreactor and of the pressure drop in the flow tube of the reactor. Applying isothermal approximation allows the derivation of analytical relationships between the kinetic, gas flow, and geometrical parameters of the microreactor, which, along with CFD simulations, accurately predict the experimental observations. On the basis of the obtained analytical relationships, a clear strategy for measuring rate coefficients of (pseudo) first-order bimolecular and unimolecular reactions using the microreactor was proposed. The pressure- and temperature-dependent rate coefficients for the C10H7Br pyrolysis calculated using variable reaction coordinate transition state theory were invoked to interpret the experimental data on the pyrolysis efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.