Abstract

The relationship between gonadotropin-releasing hormone (GnRH) receptor binding and biological activity in the goldfish pituitary for mammalian and salmon GnRH (sGnRH) analogs with structural modification at the C terminus involving replacement of glycine amide with an alkyl amine and replacement of the Gly6 residue with D amino acids was examined. The GnRH receptor binding data were analyzed with a computerized curve-fitting program (LIGAND) for a single as well as two classes of binding sites; analysis based on one site fit estimated binding affinity and capacity for one class of binding site, and analysis based on two-site fit estimated binding affinity and capacity for two classes of binding sites (high-affinity/low-capacity and low-affinity/high-capacity binding sites). The estimated receptor affinity values were then used to determine the correlation between binding affinity and gonadotropin (GTH)-release potency in vitro. The highest correlation between biological activity and receptor binding affinity was obtained for the high-affinity/low-capacity binding sites and GnRH analogs containing Trp7 and Leu8 residues (i.e., the salmon GnRH structural format) (R = 0.940 +/- 0.150). For the same group of GnRH analogs, there was no significant correlation between the relative GTH-release potency and binding affinity of the low-affinity/high-capacity sites (R = 0.159 +/- 0.434), or that obtained from a one-site fit (R = 0.198 +/- 0.431). Similarly, for mammalian GnRH analogs, significant correlation between binding affinity and biological activity (R = 0.406 +/- 0.049) was only obtained for the high-affinity sites, although the degree of correlation was significantly lower than that obtained for salmon GnRH analogs. The present findings provide strong support for the hypothesis that high-affinity GnRH receptors are involved in the control of GTH release in the goldfish pituitary. In addition, the results demonstrate clearly that the presence of Trp7, Leu8 residues in salmon GnRH molecule, a native peptide in goldfish, is important for recognition of the ligand by the GnRH receptors in the goldfish pituitary, and that structural modifications at positions 6 and 10 in this peptide can increase receptor binding affinity and biological activity at the pituitary level. The most active sGnRH analog identified to date is [D-Arg6, Pro9-NEt]-sGnRH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.