Abstract

It is shown that the density-functional-theory exchange and correlation functionals satisfy $0=\ensuremath{\gamma}{E}_{hx}[{\ensuremath{\rho}}_{N}]+2{E}_{c}^{\ensuremath{\gamma}}[{\ensuremath{\rho}}_{N}]\ensuremath{-}\ensuremath{\gamma}{E}_{hx}[{\ensuremath{\rho}}_{N\ensuremath{-}1}^{\ensuremath{\gamma}}]\ensuremath{-}2{E}_{c}^{\ensuremath{\gamma}}[{\ensuremath{\rho}}_{N\ensuremath{-}1}^{\ensuremath{\gamma}}]+\phantom{\rule{0.16em}{0ex}}2\ensuremath{\int}{d}^{3}{r}^{\ensuremath{'}}[{\ensuremath{\rho}}_{N\ensuremath{-}1}^{0}(\mathbf{r})\ensuremath{-}\phantom{\rule{0.16em}{0ex}}{\ensuremath{\rho}}_{N\ensuremath{-}1}^{\ensuremath{\gamma}}(\mathbf{r})]{v}^{0}([{\ensuremath{\rho}}_{N}];\mathbf{r})+\phantom{\rule{0.16em}{0ex}}\ensuremath{\int}{d}^{3}{r}^{\ensuremath{'}}[{\ensuremath{\rho}}_{N\ensuremath{-}1}^{0}(\mathbf{r})\ensuremath{-}{\ensuremath{\rho}}_{N\ensuremath{-}1}^{\ensuremath{\gamma}}(\mathbf{r})]\mathbf{r}\ifmmode\cdot\else\textperiodcentered\fi{}\ensuremath{\nabla}{v}^{0}([{\ensuremath{\rho}}_{N}];\mathbf{r})+\ensuremath{\int}{d}^{3}{r}^{\ensuremath{'}}{\ensuremath{\rho}}_{N}(\mathbf{r})\mathbf{r}\phantom{\rule{0.16em}{0ex}}\ifmmode\cdot\else\textperiodcentered\fi{}\phantom{\rule{0.16em}{0ex}}\ensuremath{\nabla}{v}_{c}^{\ensuremath{\gamma}}([{\ensuremath{\rho}}_{N}];\mathbf{r})\phantom{\rule{0.16em}{0ex}}\ensuremath{-}\phantom{\rule{0.16em}{0ex}}\ensuremath{\int}{d}^{3}{r}^{\ensuremath{'}}{\ensuremath{\rho}}_{N\ensuremath{-}1}^{\ensuremath{\gamma}}(\mathbf{r})\mathbf{r}\ifmmode\cdot\else\textperiodcentered\fi{}\ensuremath{\nabla}{v}_{c}^{\ensuremath{\gamma}}([{\ensuremath{\rho}}_{N\ensuremath{-}1}^{\ensuremath{\gamma}}];\mathbf{r})\phantom{\rule{0.16em}{0ex}}\ensuremath{-}\phantom{\rule{0.16em}{0ex}}\ensuremath{\int}{d}^{3}{r}^{\ensuremath{'}}{f}^{\ensuremath{\gamma}}(\mathbf{r})\mathbf{r}\ifmmode\cdot\else\textperiodcentered\fi{}\ensuremath{\nabla}{v}_{hxc}^{\ensuremath{\gamma}}([{\ensuremath{\rho}}_{N}];\mathbf{r})\ensuremath{-}2\ensuremath{\int}{d}^{3}{r}^{\ensuremath{'}}{f}^{\ensuremath{\gamma}}(\mathbf{r}){v}_{hxc}^{\ensuremath{\gamma}}([{\ensuremath{\rho}}_{N}];\mathbf{r})$. In the derivation of this equation the adiabatic connection formulation is used, where the ground-state density of an $N$-electron system ${\ensuremath{\rho}}_{N}$ is kept constant independent of the electron-electron coupling strength $\ensuremath{\gamma}$. Here ${E}_{hx}[\ensuremath{\rho}]$ is the Hartree plus exchange energy, ${E}_{c}^{\ensuremath{\gamma}}[\ensuremath{\rho}]$ is the correlation energy, ${v}_{hxc}^{\ensuremath{\gamma}}[\ensuremath{\rho}]$ is the Hartree plus exchange-correlation potential, ${v}_{c}[\ensuremath{\rho}]$ is the correlation potential, and ${v}^{0}[\ensuremath{\rho}]\phantom{\rule{4pt}{0ex}}$is the Kohn-Sham potential. The charge densities ${\ensuremath{\rho}}_{N}$ and ${\ensuremath{\rho}}_{N\ensuremath{-}1}^{\ensuremath{\gamma}}$ are the $N$- and $(N\ensuremath{-}1)$-electron ground-state densities of the same Hamiltonian at electron-electron coupling strength $\ensuremath{\gamma}$. ${f}^{\ensuremath{\gamma}}(\mathbf{r})={\ensuremath{\rho}}_{N}(\mathbf{r})\ensuremath{-}{\ensuremath{\rho}}_{N\ensuremath{-}1}^{\ensuremath{\gamma}}(\mathbf{r})$ is the Fukui function. This equation can be useful in testing the internal self-consistency of approximations to the exchange and correlation functionals. As an example the identity is tested on the analytical Hooke's atom charge density for some frequently used approximate functionals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.