Abstract

Migration of vascular smooth muscle cells (VSMCs) into neointima contributes to atherosclerosis and restenosis. This migration requires coordinated plasmalemmal fluxes of water and ions. Here, we show that aortic VSMC migration depends on the regulation of transmembrane Cl(-) flux by ClC-3, a Cl(-) channel/transporter. The contribution of ClC-3 to plasmalemmal Cl(-) current was studied in VSMCs by electrophysiological recordings. Cl(-) current was negligible in cells perfused with 0 [Ca(2+)]. Raising intracellular [Ca(2+)] to 0.5 μM activated a Cl(-) current (I(Cl.Ca)), approximately half of which was eliminated on inhibition by KN-93 of calmodulin-dependent protein kinase II. I(Cl.Ca) was also halved by inositol-3,4,5,6-tetrakisphosphate, a cellular signal with the biological function of specifically preventing calmodulin-dependent protein kinase II from activating I(Cl.Ca). Gene disruption of ClC-3 reduced I(Cl.Ca) by 50%. Moreover, I(Cl.Ca) in the ClC-3 null VSMCs was not affected by either KN-93 or inositol-3,4,5,6-tetrakisphosphate. We conclude that I(Cl.Ca) is composed of 2 components, one is ClC-3 independent whereas the other is ClC-3 dependent, activated by calmodulin-dependent protein kinase II and inhibited by inositol-3,4,5,6-tetrakisphosphate. We also assayed VSMC migration in transwell assays. Migration was halved in ClC-3 null cells versus wild-type cells. In addition, inhibition of ClC-3 by niflumic acid, KN-93, or inositol-3,4,5,6-tetrakisphosphate each reduced cell migration in wild-type cells but not in ClC-3 null cells. These cell-signaling roles of ClC-3 in VSMC migration suggest new therapeutic approaches to vascular remodeling diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.