Abstract

This article focuses on building a statistical monitoring scheme for service systems that experience time-varying arrivals of customers and have time-varying service rates. There is lack of research in the systematic statistical monitoring of large-scale service systems, which is critical for maintaining a high quality of service. Motivated by the emergency department at a major academic medical center, this article intends to fill this research gap and provide a practical statistical monitoring scheme capable of detecting changes in service using readily available time stamp data. The proposed method is focused on building a functional regression model based on customer arrival and departure time instances from an in-control system. The model finds the expected departure intensity function for an observed arrival intensity on any given day of operation. The mean squared difference between the expected departure intensity function and the observed departure intensity functions is used to generate an alarm indicating a significant change in service. This methodology is validated using simulation and real data case studies. The proposed method can identify patterns of inefficiency or delay in service that are hard to detect using traditional statistical monitoring algorithms. The method offers a practical approach for monitoring service systems and determining when staffing levels need to be re-optimized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.