Abstract

In the mouse nasopalate papilla and in the trenches of the foliate and vallate papillae, taste buds accumulated primarily during the first 2 weeks after birth. Null mutation for brain-derived neurotrophic factor caused extensive death of embryonic taste neurons, with the secondary outcome that most taste buds failed to form. However not all taste neurons died; functional redundancy rescued a variable number. The primary research objective was to identify the likely site of the taste neuron rescue factor that substituted for BDNF. In this quest taste bud abundance served as a useful gauge of taste neuron abundance. The proportion of taste buds that developed was variable and uncorrelated among the nasopalate, vallate, and foliate gustatory papillae within each bdnf null mutant mouse. Thus, in spite of shared IXth nerve innervation, the vallate and foliate papillae independently varied in residual gustatory innervation. This variation rules against the rescue of gustatory neurons by system-wide factors or by factors acting on the IXth ganglion or nerve trunk. Therefore it is likely that surviving BDNF-deprived taste neurons were stochastically rescued by a redundant neurotrophic factor at the level of the local gustatory epithelium. These findings broaden the classic expectation that target tissue supplies only a single neurotrophic factor that can sustain sensory (taste) neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.