Abstract

IntroductionPeripheral nerve injury (PNI) often leads to significant functional loss in patients and poses a challenge to physicians since treatment options for improving functional outcomes are limited. Recent studies suggest that erythropoietin and glucocoticoids have beneficial effects as mediators of neuro-regenerative processes. We hypothesized that combination treatment with erythropoietin and glucocoticoids would have a synergistic effect on functional outcome after PNI.Materials and methodsSciatic nerve crush injury was simulated in ten-week-old male C57BL/6 mice. The mice were divided into four groups according to the type of drugs administered (control, erythropoietin, dexamethasone, and erythropoietin with dexamethasone). Motor functional recovery was monitored by walking track analysis at serial time points up to 28 days after injury. Morphological analysis of the nerve was performed by immunofluorescent staining for neurofilament (NF) heavy chain and myelin protein zero (P0) in cross-sectional and whole-mount nerve preparations. Additionally, morphological analysis of the muscle was performed by Hematoxylin and eosin staining.ResultsCombination treatment with erythropoietin and dexamethasone significantly improved the sciatic functional index at 3, 7, 14, and 28 days after injury. Fluorescence microscopy of cross sectional nerve revealed that the combination treatment increased the ratio of P0/NF-expressing axons. Furthermore, confocal microscopy of the whole-mount nerve revealed that the combination treatment increased the fluorescence intensity of P0 expression. The cross-sectional area and minimum Feret’s diameter of the muscle fibers were significantly larger in the mice which received combination treatment than those in the controls.ConclusionOur results demonstrated that combination treatment with erythropoietin and dexamethasone accelerates functional recovery and reduces neurogenic muscle atrophy caused by PNI in mice, which may be attributed to the preservation of myelin and Schwann cell re-myelination. These findings may provide practical therapeutic options for patients with acute PNI.

Highlights

  • Peripheral nerve injury (PNI) often leads to significant functional loss in patients and poses a challenge to physicians since treatment options for improving functional outcomes are limited

  • Our results demonstrated that combination treatment with erythropoietin and dexamethasone accelerates functional recovery and reduces neurogenic muscle atrophy caused by PNI in mice, which may be attributed to the preservation of myelin and Schwann cell re-myelination

  • Hemoglobin and hematocrit levels in the mice treated with erythropoietin 7 days after the injection, were significantly higher than those in the mice treated with saline (S1 Fig)

Read more

Summary

Methods

Sciatic nerve crush injury was simulated in ten-week-old male C57BL/6 mice. The mice were divided into four groups according to the type of drugs administered (control, erythropoietin, dexamethasone, and erythropoietin with dexamethasone). Motor functional recovery was monitored by walking track analysis at serial time points up to 28 days after injury. Morphological analysis of the nerve was performed by immunofluorescent staining for neurofilament (NF) heavy chain and myelin protein zero (P0) in cross-sectional and wholemount nerve preparations. Morphological analysis of the muscle was performed by Hematoxylin and eosin staining

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call