Abstract
In rod and cone photoreceptor cells, activation of particulate guanylate cyclase (retGC1) is mediated by a Ca2+-binding protein termed GCAP1, that detects changes in [Ca2+]free. In this study, we show that N-acylated GCAP1 restored Ca2+ sensitivity of native and recombinant photoreceptor retGC1. ATP increased the affinity of retGC1 for GCAP1 and accelerated catalysis. Using peptides derived from the GCAP1 sequence, we found that at least three regions, encompassing the N-terminus, the EF-1 motif, and the EF-3 motif, were likely involved in the interaction with retGC1. Mutation of 2Gly to Ala (GCAP1-G2A), which abolished myristoylation and a 25 amino acid truncation at the N-terminus (delta25-GCAP1) reduced retGC1-stimulating activity dramatically, while deletion of 10 amino acids (delta10-GCAP1) reduced the specific activity by only approximately 60% and modified the Ca2+ sensitivity. At 10(-6) M [Ca2+]free, in conditions that inactivated native GCAP1, retGC1 showed significant activity in the presence of delta10-GCAP1. Native and all three mutant forms of GCAP1 had similar affinities for Ca2+ as demonstrated by gel filtration and the changes in tryptophan fluorescence. All mutants bound to ROS membranes in a Ca2+-independent manner, except delta25-GCAP1, which was mostly soluble. These findings suggest that the N-terminal region is important in tethering of GCAP1 to the ROS membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.