Abstract

We propose a functional random effect time-varying coefficient model to establish the dynamic relationship between the response and predictor variables in longitudinal data. This model allows us not only to interpret time-varying covariate effects, but also to depict random effects via time-varying profiles that are characterized by functional principal components. We develop the functional profiling-backfitting method to estimate model components, which includes the profiling and backfitting procedures via a set of least squares type estimating equations. Asymptotic properties of the resulting estimator are obtained. Furthermore, we investigate the finite sample performance of the proposed method through simulation studies and present an application to primary biliary cirrhosis data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.