Abstract
The use of microarrays for parallel screening of nucleic acid profiles has become an industry standard. Similar efforts for screening protein-protein interactions are gaining momentum, however, they remain limited by the requirement for relatively large sample volumes. One strategy for overcoming this problem is to significantly decrease the size and consequently the sample volume of the protein interaction assay. We report here on our progress over the last two years in the construction of ultraminiaturized, functional protein capture assays. Each one micron spot in these array-based assays covers less than 1/1000(th) of the surface area of a conventional microarray spot while still maintaining enough antibodies to provide a useful dynamic range. These nanoarray assays can be read by conventional optical fluorescence microscopy as well as by novel label-free methods such as atomic force microscopy. The size reduction realized by functional protein nanoarrays also creates opportunities for novel applications including highly multiplexed single cell analysis and integration with microfluidics and other "lab-on-a-chip" technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.