Abstract

Neuroglobin and cytoglobin are two recently discovered vertebrate globins, which are expressed at low levels in neuronal tissues and in all tissues investigated so far, respectively. Based on their amino acid sequences, these globins appear to be phylogenetically ancient and to have mutated less during evolution in comparison to the other vertebrate globins, myoglobin and hemoglobin. As with some plant and bacterial globins, neuroglobin and cytoglobin hemes are hexacoordinate in the absence of external ligands, in that the heme iron atom coordinates both a proximal and a distal His residue. While the physiological role of hexacoordinate globins is still largely unclear, neuroglobin appears to participate in the cellular defence against hypoxia. We present the current knowledge on the functional properties of neuroglobin and cytoglobin, and describe a mathematical model to evaluate the role of mammalian retinal neuroglobin in supplying O2 supply to the mitochondria. As shown, the model argues against a significant such role for neuroglobin, that more likely plays a role to scavenge reactive oxygen and nitrogen species that are generated following brain hypoxia. The O2 binding properties of cytoglobin, which is upregulated upon hypoxia, are consistent with a role for this protein in O2-requiring reactions, such as those catalysed by hydroxylases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.