Abstract

The high molecular weight glutenin subunits (HMW-GS) of wheat are major determinants of the viscoelastic properties of gluten and dough. The bread making quality of field grown transgenic lines of bread wheat expressing the HMW-GS 1Ax1 or 1Dx5 genes were evaluated over a two year period. Subunit 1Ax1 represented about 29% and 48% of the total HMW-GS in lines 1-2 and 2-2, respectively, while subunit 1Dx5 represented 65.4% and 62% of the total HMW-GS in transgenic lines 6-2 and 9, respectively. The expression of subunits 1Ax1 or 1Dx5 in transgenic wheat led to corresponding decreases in the proportions of endogenous HMW-GS. HMW-GS 1Ax1 and 1Dx5 had contrasting effects on dough quality determined by the Alveograph and sedimentation test. Subunit 1Ax1 increased the tenacity (P), extensibility (L), deformation work (W), and sedimentation value, with the increase being related to the level of expression. In contrast, subunit 1Dx5 led to a smaller increment in the tenacity (P), but to drastic decrease in both extensibility (L), deformation work (W), and the sedimentation value. Expression of subunit 1Ax1 in transgenic wheat resulted in lines with improved rheological properties whereas the lines expressing subunit 1Dx5 resulted in unsuitable breadmaking-related characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call