Abstract

The effects of fatty acid type (myristic, palmitic, stearic, oleic, linoleic, and linolenic acid) on the characteristics of starch-lipid complexes under high temperature were investigated. Fatty acids with a shorter carbon chain or a greater number of double bonds contributed to the formation of V-type starch-lipid complexes. The thermostability of starch-unsaturated fatty acid (UFA) complexes prepared at high temperature was increased compared with those obtained at lower temperature. Resistant starch (RS) contents and melting temperatures had a strong significant positive correlation. Complexes with better thermostability were more resistant to enzymatic hydrolysis. Among them, the starch-stearic acid complexes possessed the highest RS content. The paste of starch-linolenic acid complexes had the lowest internal friction and the strongest thixotropy. The broken of double bonds in UFAs probably accounted for the increased starch-lipid complexes. The crystalline, thermal, rheological, and digestion properties of samples treated at high temperature were significantly affected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call