Abstract

The consumption of green banana flour (GBF) products has been linked to reduced glycemic index (GI) and low risk of type 2 diabetes and obesity. The purpose of this study was to investigate the effect of micronization (high-intensity infrared heating method) on the molecular, microstructure and in vitro starch digestibility of five GBF cultivars grown in South Africa. The GBF was micronized at three surface temperatures (90, 120 and 150 °C for 30 min) and the in vitro starch digestibility was determined with Megazyme kits. Micronization at the highest temperature (150 °C) increased the swelling power by 6.00% in all five GBF cultivars when compared to control (unmicronized GBF). Micronization slightly reduced the resistant starch (RS) of the GBF cultivars by up to 8.63%. The FHIA-01 cultivar showed the highest RS (86.50%), whereas Grande Naine-150 °C cultivar had the lowest RS (76.00%). Both micronized and control GBF exhibited similar X-ray diffraction patterns with all cultivars and at all micronization temperatures. Similarly, the functional properties of the GBF were not altered by micronization when observed with Fourier transform infrared spectroscopy. Scanning electron microscopy showed changes in the surface morphology of starch granules after micronization and these were dependent on temperature. Overall, micronization at 120 °C showed the best improvement in functional properties of GBF and this makes it suitable for potential application for the manufacture of instant breakfast products, baked goods and pasta. In addition, the micronized GBF cultivars retained high RS, suggesting potential health benefits for people with diabetes and obesity. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.