Abstract
Abstract The Gaia optical reference frame is intrinsically undefined with respect to global orientation and spin, so it needs to be anchored in the radio-based International Celestial Reference Frame (ICRF) to provide a referenced and quasi-inertial celestial coordinate system. The link between the two fundamental frames is realized through two samples of distant extragalactic sources, mostly active galactic nuclei and quasars, but only the smaller sample of radio-loud ICRF sources with optical counterparts is available to determine the mutual orientation. The robustness of this link can be mathematically formulated in the framework of functional principal component analysis using a set of vector spherical harmonics to represent the differences in celestial positions of the common objects. The weakest eigenvectors are computed, which describe the greatest deficiency of the link. The deficient or poorly determined terms are specific vector fields on the sphere that carry the largest errors of absolute astrometry using Gaia in reference to the ICRF. This analysis provides guidelines for the future development of the ICRF maximizing the accuracy of the link over the entire celestial sphere. A measure of the robustness of a least-squares solution, which can be applied to any linear model fitting problem, is introduced to help discriminate between reference frame tie models of different degrees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.