Abstract

Functional precision medicine is a strategy whereby live tumor cells from affected individuals are directly perturbed with drugs to provide immediately translatable, personalized information to guide therapy. The heterogeneity of human cancer has led to the realization that personalized approaches are needed to improve treatment outcomes. Precision oncology has traditionally used static features of the tumor to dictate which therapies should be used. Static features can include expression of key targets or genomic analysis of mutations to identify therapeutically targetable "drivers." Although a surprisingly small proportion of individuals derive clinical benefit from the static approach, functional precision medicine can provide additional information regarding tumor vulnerabilities. We discuss emerging technologies for functional precision medicine as well as limitations and challenges in using these assays in the clinical trials that will be necessary to determine whether functional precision medicine can improve outcomes and eventually become a standard tool in clinical oncology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.